# Oxo and thiophosphoramides of niobocene or tantalocene as organometallic ligands: synthesis of heterobimetallic complexes $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PR}_{2} \mathrm{X}\right) \mathrm{M}^{\prime} \mathrm{L}_{n}\right](\mathrm{M}=\mathrm{Nb}$ or $\mathrm{Ta} ; \mathbf{X}=\mathbf{O}$ or $\mathrm{S} ; \mathrm{M}^{\prime}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Mn}, \mathrm{Fe}$ or Sn ) <br> Sylvine Challet ${ }^{\text {a }}$, Marek M. Kubicki ${ }^{\text {a }}$, Jean-Claude Leblanc ${ }^{\text {a }}$, Claude Moïse ${ }^{\text {a,* }}$, Bernd Nuber ${ }^{\text {b }}$ <br> ${ }^{\text {a }}$ Laboratoire de Synthèse et d'Electrosynthèse Organométalliques, Unité de Recherche associée au CNRS 1685, 6 boulevard Gabriel, F-21000 Dijon, France <br> ${ }^{\text {b }}$ Anorganisch-Chemisches Institut der Universität, W-69120 Heidelberg, Germany 

Received 17 December 1993


#### Abstract

The phosphido complexes $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2}\right)$ (with $\mathrm{M}=\mathrm{Nb}$ or Ta and $\mathrm{R}=\mathrm{Me}$ or Ph ) react with $\mathrm{H}_{2} \mathrm{O}_{2}$ or $\mathrm{S}_{8}$, leading to the corresponding oxides and sulfides. The oxygen and the sulfur derivatives have similar reactivities towards organic electrophilic reagents such as MeI and MeCOCl . Unlike organometallic electrophilic species, the sulfur derivatives afford a new class of bimetallic complex $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PR}_{2} \mathrm{~S}\right) \mathrm{M}^{\prime} \mathrm{L}_{n}\right]\left(\mathrm{M}^{\prime} \mathrm{L}_{n}=\mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{Mo}(\mathrm{CO})_{5}, \mathrm{~W}(\mathrm{CO})_{5}, \mathrm{CpMn}(\mathrm{CO})_{2}\right.$ or $\left.\mathrm{Fe}(\mathrm{CO})_{4}\right)$ ). In contrast, the oxygen compounds react only with organometallic tin complexes such as $\mathrm{Bu}_{3} \mathrm{SnCl}$. The crystallographic analyses of $\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{SMe}\right)\right] \mathrm{I}$ and $\left[\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ are reported and discussed.


Keywords: X-ray structures; Niobium; Tantalum; Dinuclear complexes

## 1. Introduction

Considerable interest has focussed on the synthesis and chemistry of binuclear complexes containing two different transition metals [1]. For example, phosphidobridged [2,3], oxo-bridged [4] or thiolato-bridged [5] heterobimetallic complexes have received particular attention. One reason for interest in such species is the possibility that new reactivity patterns will emerge, which might be substantially different from those of binuclear complexes containing a direct metal-metal bond.

In view of the interesting functionalized transition metal complexes with niobium or tantalum, we decided to investigate the synthesis and chemical reactivity of compounds containing the grouping $\mathrm{PR}_{2} \mathrm{X}(\mathrm{X}=$ O or S ) and their application in the preparation of new bimetallic $\mathbf{M}-\mathbf{P}-\mathbf{X}-\mathbf{M}^{\prime}$ systems $(\mathbf{M}=\mathbf{N b}$ or $\mathrm{Ta} ; \mathbf{X}=\mathbf{O}$

[^0]or S). In this paper, we report the isolation, detailed structural characterization, and reactivity towards organic and organometallic electrophilic reagents of $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2} \mathrm{X}\right)\right](\mathrm{M}=\mathrm{Nb}$ or $\mathrm{Ta} ; \mathrm{R}=\mathrm{Me}$ or Ph ; $\mathrm{X}=\mathrm{O}$ or S ). The initial results in this field have been previously reported in a short communication [6].

## 2. Results and discussion

## 2.1. $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2} \mathrm{O}\right)\right]$ and $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(P R_{2} \mathrm{~S}\right)\right]$

Complexes 1a, 1b, 1'a and 1'b [7] can be easily converted into the corresponding oxides or sulfides by treatment of their toluene solutions with hydrogen peroxide and elemental sulfur respectively (Scheme 1).

The sulfur complexes are obtained as cream crystals and the corresponding oxygen complexes as pink crystalline solids. Unlike 2a (or 2'a) the dimethyl oxygen derivatives cannot be isolated. Their spectroscopic data are consistent with the structures proposed for 2 and 3. The IR spectra exhibit $\mathrm{P}=\mathrm{O}$ (at $1033 \mathrm{~cm}^{-1}$ for $\mathbf{3 b}$ ) or


Scheme 1. $\mathbf{a}, \mathrm{R}=\mathrm{Me} ; \mathbf{b}, \mathrm{R}=\mathrm{Ph}$.
$\mathrm{P}=\mathrm{S}$ (at $570 \mathrm{~cm}^{-1}$ for 2 b ) bands. The $\left\{{ }^{1} \mathrm{H}\right\}{ }^{31} \mathrm{P}$ NMR data show a deshielded signal when compared with their precursor complexes (about 110 ppm in 2 a and about 80 ppm in $\mathbf{2 b}$ ).

### 2.2. Reactivity of phosphoramido complexes towards organic electrophilic reagents

Stirring toluene solutions of 2 or 3 and methyl iodide at room temperature forms orange salts 4 or 5 in an almost quantitative yield (Scheme 2).

Under the same conditions, reaction with acetyl chloride affords yellow precipitates of the corresponding salts 6 or 7. The spectroscopic data are consistent with products resulting from an electrophilic attack at the electron-rich oxygen and sulfur atoms respectively and not at the nucleophilic $d^{2}$ transition metal (Scheme $3)$.

The methylation and acylation at the sulfur atom are responsible for a moderately deshielded ${ }^{31} \mathrm{P}$ NMR signal when compared with that of the corresponding thiodiphenylphosphoramido complexes (about 10 ppm for 4 b or $\mathbf{4}^{\prime} \mathbf{b}$ and about 20 ppm for $\mathbf{6 b}$ or $6^{\prime} \mathbf{b}$ ). This deshielding effect is more pronounced in the thiodimethylphosphoramido complexes (about 20 ppm for $\mathbf{4 a}$ or 4'a and about 40 ppm for 6a or 6'a) and the oxodiphenylphosphoramido complexes ( 69 ppm for $\mathbf{5 b}$ and 79 ppm for $7 \mathbf{7 b}$ ).

IR spectral data for these complexes show that ( $\mathrm{P}=\mathrm{S}$ ) decreases (about $40 \mathrm{~cm}^{-1}$ ) on methylation, consistent with bonding of the methyl group to the sulfur atom. Moreover, methylation or acylation leads to a high frequency $\nu(\mathrm{CO}): 1938 \mathrm{~cm}^{-1}$ in 2a, $1964 \mathrm{~cm}^{-1}$ in $\mathbf{4 a}$, and $1959 \mathrm{~cm}^{-1}$ in $6 \mathbf{a}$.

In order to confirm the site of the electrophilic attack, the structure of the methyl complex $\left[\mathrm{Cp}_{2} \mathrm{Nb}\right.$ $\left.(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{SMe}\right)\right] I$ (4b) has been determined by singlecrystal X-ray diffraction. Comparison of the structure


Scheme 2.

$$
\begin{aligned}
& \mathrm{Cp}_{2} \mathrm{M} \mathrm{CO}_{\mathrm{CO}}^{\mathrm{PR}_{2} \mathrm{X}} \xrightarrow{\mathrm{MeCOCl}}\left[\mathrm{Cp}_{2} \mathrm{M} \mathrm{CO}_{\mathrm{CO}}^{\mathrm{PR}_{2} \mathrm{xCOMe}}\right] \mathrm{Cl}
\end{aligned}
$$

Scheme 3.
of $\mathbf{4 b}$ with that of the related bimetallic complex [ $\mathrm{Cp}_{2}-$ $\left.\mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ will be discussed later.

### 2.3. Reactivity of thiophosphoramido complexes towards organometallic electrophilic reagents

In contrast to the oxo derivatives, the sulfide compounds $2 \mathbf{a}$ and $\mathbf{2}^{\prime}$ a react readily with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right.$ ] or with unsaturated organometallic species such as Cr $(\mathrm{CO})_{5}, \mathrm{Mo}(\mathrm{CO})_{5}, \mathrm{~W}(\mathrm{CO})_{5}$ and $\mathrm{CpMn}(\mathrm{CO})_{2}$ to give bimetallic complexes incorporating a Group 6,7 or 8 metal (Scheme 4). In the same manner, phenyl compounds 2 b and $\mathbf{2}^{\prime} \mathbf{b}$ lead to dinuclear complexes containing Nb or Ta , and W (10b and $\mathbf{1 0}^{\prime} \mathbf{b}$ ).

These compounds are characterized by field desorption mass spectrometry. Coordination at the sulfur is inferred from the IR, ${ }^{1} \mathrm{H}$, NMR and ${ }^{31} \mathrm{P}$ NMR data and furthermore confirmed by the X-ray analysis for complex 10'a. $\mathrm{A}{ }^{31} \mathrm{P}$ signal moderately deshielded by comparison with that of the precursor ( 18 ppm when $\mathrm{R}=\mathrm{Me}$ and 12 ppm when $\mathrm{R}=\mathrm{Ph}$ ) is also observed. Additional information on structures is provided by an analysis of the IR spectra in the $\nu(\mathrm{P}=\mathrm{S})$ region. $\nu(\mathrm{P}=\mathrm{S})$ appears to have decreased ( $30 \mathrm{~cm}^{-1}$ approximately) on coordination. These data are similar to those obtained for $\left[\left(\mathrm{R}_{3} \mathrm{PS}\right) \mathrm{Cr}(\mathrm{CO})_{5}\right][8]$ and confirm the presence of a sulfur-metal bonds in these bimetallic complexes.

### 2.4. Molecular structure of $4 b$ and $10^{\prime} a$

ORTEP drawings of the cation $\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2}-\right.\right.$ SMe)] in $\mathbf{4 b}$ and of the molecule $\left[\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\right.\right.$ $\left.\left.\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]\left(\mathbf{1 0}^{\prime} \mathbf{a}\right)$ are shown in Figs. 1 and 2 respectively. The principal bond lengths and bond angles are given in Table 1.


| M |  |
| :--- | :--- |
| Nb | $2 \mathrm{a}-\mathrm{b}$ |
| Ta | $\mathbf{2 ' a}^{\prime} \mathrm{a}-\mathrm{b}$ |



Scheme 4.


Fig. 1.
In both structures the various fragments have typical geometries, i.e. distorted tetrahedral for the metallocene part and octahedral for the tungsten atom in the carbonyl moiety. The metal-phosphorus bond lengths are essentially the same in $\mathbf{4 b}(2.579(1) \AA)$ and in 10'a ( $2.572(6) \AA$ ). They are, however, shorter than the M-P distances in complex $\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}^{1} \mathrm{Pr}\right)\right]$ (I) $(2.631(5) \AA$ ) $[9]$, which has a terminal pyramidal phosphide, and in the monophosphido-bridged complex $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ta}(\mathrm{CO})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{2}\left(\mathrm{C}_{5}-\right.\right.$ $\mathrm{H}_{5}$ )] (II) (2.708(2) A$)$ [10]. Comparison of the niobocene

Table 1
Principal bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ for $\left[\left(\mathrm{C}_{5}-\mathrm{H}_{5}\right)_{2}\right.$ $\left.\mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{SMe}\right)\right]$ (4b) and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}\right.\right.$ $\left.\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO})_{5}$ ] (10'a)

|  | 4b | $\mathbf{1 0}^{\prime} \mathbf{a}$ |
| :--- | :---: | :--- |
| Bond lengths |  |  |
| Ta - W |  |  |
| M-P | $2.579(1)$ | 2.29 |
| M-C (CO) | $2.058(4)$ | $1.97(2)$ |
| M-CNT(1) | 2.055 | 2.067 |
| M-CNT(2) | 2.052 | 2.072 |
| C-O (MCO) | $1.140(5)$ | $1.20(3)$ |
| P-S | $2.092(1)$ | $2.049(8)$ |
| S-C(2) (Me) | $1.806(4)$ |  |
| S-W |  | $2.599(6)$ |
| W-C(1) |  | $2.09(3)$ |
| W-C(2) |  | $1.97(3)$ |
| W-C(3) |  | $1.96(2)$ |
| W-C(4) |  | $2.19(3)$ |
| W-C(5) |  | $1.93(2)$ |
| Bond angles | $86.2(1)$ |  |
| P-M-C (CO) | 137.9 | $88.3(8)$ |
| CNT(1)-M-CNT(2) | $177.7(3)$ | 138.7 |
| M-C-O | $110.1(2)$ | $174(2)$ |
| M-P-S | $103.7(1)$ | $113.7(3)$ |
| P-S-C(2) (Me) |  | $114.6(3)$ |
| P-S-W |  |  |

CNT(1) and CNT(2) are the centres of gravity of the $\mathrm{C}(3)-\mathrm{C}(7)$, and $C(8)-C(12)$ rings respectively in $4 b$ and the $C(11)-C(15)$ and $C(16)-$ $\mathrm{C}(20)$ rings respectively in $\mathbf{1 0}^{\prime} \mathrm{a}$.
and tantalocene complexes is justified because the covalent radii of Nb and Ta differ only by $0.01 \AA$ [11a] owing to the lanthanide contraction. The shorter bonds observed in complexes 4 b and $\mathbf{1 0}^{\prime}$ a may be attributed primarily to the presence of formally smaller $P(V)$ instead of P(III) in I and II. However, this is probably not a fully satisfactory explanation for various reasons.


Fig. 2.

The distances observed in $\mathbf{4 b}$ and $\mathbf{1 0}^{\prime}$ a correspond very well with the $\mathrm{Nb}-\mathrm{P}$ (phosphine) bond length $(2.565(15) \AA)$ reported for $\left[\mathrm{CpNb}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\left(\mathrm{H}_{2}\right)\right][12]$. The $\mathrm{Nb}-\mathrm{P}$ bond in I is long because of the repulsions between the lone pairs localized on niobium and on phosphorus. This is consistent with a general statement that the metal-P (terminal pyramidal phosphide) bonds are longer than the metal- P (phosphine) bonds [13,14]. Even if the 'transition metal gauche effect" [9,15] (adoption of a geometry in which the total energy and the repulsions between lone pairs) is minimized, the metal-phosphide bonds remain long. However, the phosphorus lone pair in II is involved in the bonding with a second metal fragment, but steric repulsions between this fragment and the metallocene part of the molecule are responsible for the long M-P distance observed in II. A very long Mo-P bond (2.602(2) $\AA$ ) has also been found in the analogous structure $\left[\mathrm{Cp}_{2} \mathrm{Mo}(\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right) \mathrm{Mn}(\mathrm{CO})_{2} \mathrm{Cp}\right]$ (III) [3]. Strong steric repulsions between the metal fragments in II and in III is supported by the extremely large $\mathrm{M}-\mathrm{P}-\mathrm{M}^{\prime}$ angles observed ( $125.5(1)^{\circ}$ and $124.5(1)^{\circ}$ respectively), as well as in $\left[\left(\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ta}(\mathrm{CO})[\mu-\mathrm{PPh}(\mathrm{OMe})] \mathrm{Cr}\right.$ $\left.(\mathrm{CO})_{5}\right]\left(127.1\left(1^{\circ}\right)\right.$ [16]. In $\mathbf{4 b}$ and $\mathbf{1 0}^{\prime}$ a the coordination site corresponding to the phosphorus lone pair in I is occupied by sulfur atom and steric constraints because bulky $\mathrm{W}(\mathrm{CO})_{5}$ fragment no longer exist in $\mathbf{1 0}^{\prime}$ a. This fragment is remoted from the $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2}\right)$ tragment by the sulfur atom. Consequently, the $\mathrm{M}(\mathrm{Nb}, \mathrm{Ta})-$ $\mathrm{P}-\mathrm{S}$ angles of $110.1(2)^{\circ}$ in $\mathbf{4 b}$ (close to the ideal tetrahedral value) and $113.7(3)^{\circ}$ in $\mathbf{1 0}^{\prime}$ a are much smaller than the $\mathrm{M}-\mathrm{P}-\mathrm{M}^{\prime}$ angles observed in the monophos-phido-bridged complexes II and III, and the M-P distances become shorter.

Three possible orientations of $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO}, \mathrm{H})\left(\mathrm{PR}_{2} \mathrm{X}\right)$ systems (depicted in Scheme 5) are of value for the comparison of the geometries found in $\mathbf{4 b}$ and $\mathbf{1 0}^{\prime}$ a with those observed in I-III.

The structure A has never been observed in monophosphido-bridged binuclear complexes derived from metallocencs of Groups 5 and 6 metals in the absence of metal-metal bonds and of other bridges. In the terminal phosphide complex I, this structure is a consequence of the "gauche effect" and in II and III bearing a diphenylphosphido bridge it is probably due to the steric repulsions between metal fragments. The dihedral angles (CO,H)MP-MPX are $74^{\circ}$ for $\mathbf{I}$ (X is


A


B


C
Scheme 5.
the phosphorus lone pair), $69.3^{\circ}$ for II, $68.2^{\circ}$ for III and $69.4^{\circ}$ for $\mathbf{4 b}$ and correspond to conformation B. Conformation C has been observed for the first time in the structure of $\mathbf{1 0}^{\prime}$ a in which the (CO)TaP-TaPS angle is $175.8^{\circ}$. This inversion of positions of the R groups attached to phosphorus with respect to the $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})$ fragment may be due to the smaller size of methyl substituents compared with phenyi. Such an endo orientation of Me groups with respect to the CO compels them to occupy symmetrically positions on each side of the ( CO ) TaP plane bisecting that of Cp rings. Consequently, the $\mathrm{C}(6), \mathrm{Ta}, \mathrm{P}$ and S atoms (Fig. 2) should be coplanar, as observed. This suggests electron delocalization over these atoms.

Such a delocalization should decrease the doublebond character of the $\mathrm{P}=\mathrm{S}$ bond in 10'a and probably increase the electron density on the $\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})$ fragment. This seems to be confirmed by a shorter Ta$\mathrm{C}(6)(\mathrm{CO})$ bund length (1.97(2) $\AA$ ) than the $\mathrm{M}-\mathrm{C}(\mathrm{CO})$ distances observed in II (2.03(2) $\AA$ ) [10] and in 4b (2.058(4) A, Table 1). A shortening of the M-CO bond is due to stronger $\mathrm{M} \rightarrow \mathrm{CO} \pi$ back bonding. The $\mathrm{P}-\mathrm{S}$ bond length in 10'a is essentially the same as that in the $\mathrm{Mo}(\mathrm{V})$ complex $\left[\mathrm{MoCl}_{3} \mathrm{O}\left(\mathrm{SPPh}_{3}\right)\right]\left(2.041(1) \AA \AA^{\circ}\right)[17]$, but significantly longer than in $\left[\mathrm{Cr}(\mathrm{CO})_{5}\left(\mathrm{SPMe}_{3}\right)\right]$ (1.990(3) $\AA$ ) [18]. The $\mathrm{Cr}-\mathrm{S}$ bond of $2.510(2) \AA$ in this last compound is very long and, because of the difference between the covalent radii of Cr and $\mathrm{W}(0.14 \AA$ [11b]), must be considered to be much weaker than the W-S bond in $10^{\prime}$ a ( $2.599(6) \AA$ ). Thus, the double-character of the phosphorus-sulfur bond is weaker in 10'a than in the chromium complex. For comparison, we note that the $\mathrm{P}=\mathrm{S}$ bond lengths in phosphine sulfides are in the range $1.94-1.96 \AA[19,20]$.

Finally, from a crystallochemical point of view, the difference between the $\mathrm{P}-\mathrm{S}$ bond lengths in $\mathrm{P}-\mathrm{S}-\mathrm{C}$ (2.092(1) $\AA$, 4b) and in P-S-M (2.049(8) À, 10'a; 2.041(1) $\AA,\left[\mathrm{MoCl}_{3} \mathrm{O}\left(\mathrm{SPPh}_{3}\right)\right]$ [17]) bond lengths is consistent with the observations made for phosphates with $\mathrm{P}-\mathrm{O}-\mathrm{C}$ and $\mathrm{P}-\mathrm{O}-\mathrm{M}$ bonds [21]. The mean values of "bridging" $\mathrm{P}-\mathrm{O}$ bond lengths are close to $1.59 \AA$ in structures of the type $\mathrm{O}_{2} \mathrm{P}(\mathrm{OC})_{2}$ and to $1.61 \AA$ in the $\mathrm{O}_{3} \mathrm{P}(\mathrm{OC})$ types with covalent carbon-oxygen bonding. They are close to $1.55 \AA$ in compounds with the $\mathrm{O}_{2} \mathrm{P}(\mathrm{OM})_{2}$ unit, where weaker and less covalent metal-oxygen interactions are present.

### 2.5. Reactivity of oxophosphoramides towards $\mathrm{Bu} u_{3} \mathrm{SnCl}$

In an attempt to synthesize another type of heterobimetallic system with a new $\mathrm{Nb}(\mathrm{Ta})-\mathrm{P}-\mathrm{O}-\mathrm{M}^{\prime}$ core, we have mixed the oxophosphoramide complexes with $\operatorname{tin}(\mathrm{IV})$ compounds such as $\mathrm{Bu}_{3} \mathrm{SnCl}$ (Scheme 6).

The resulting reaction products have been formulated as five-coordinated organotin binuclear complexes [22]. The ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1 3 b}$ and $\mathbf{1 3}^{\prime} \mathbf{b}$


Scheme 6.
show a moderately deshielded signal compared with 3b and $3^{\prime} \mathrm{b}$ ( 23 ppm and 18 ppm respectively).

In contrast, the thiophosphoramides do not react with these tin(IV) compounds, consistent with the soft character of the coordination site.

In conclusion, we have synthesized a new class of metalloligands able to react with organic electrophilic species or to link organometallic fragments via a $\mathrm{P}-\mathrm{S}$ or a $\mathrm{P}-\mathrm{O}$ bridge; the phosphine oxides bind exclusively "hard" metallic elements whereas sulfides associate "soft" Group 6, 7 and 8 metal carbonyl fragments. Further work is in progress to investigate the reactivities of these new precursors of bimetallic complexes.

## 3. Experimental section

### 3.1. Materials and methods

All preparative reactions were performed under argon. Tetrahydrofuran (THF), toluene and pentane were distilled from sodium benzophenone ketyl. Phosphido complexes $\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2}\right)$ [7] and $\left[\mathrm{M}(\mathrm{CO})_{5}(\mathrm{THF})\right]$ [23] were prepared by published procedures. Column chromatography was carried out on silica gel (70-230 mesh). The following instruments were used in this work: Nicolet 205 (IR); Bruker AC $200\left({ }^{1} \mathrm{H}\right.$ and ${ }^{31} \mathrm{P}$ NMR). Field desorption mass spectra were run on a Finnigan MAT 311 A instrument from toluene, acetone and chloroform solutions. Elemental analyses were performed by the CNRS microanalytical laboratory.

### 3.2. Syntheses of the new complexes

### 3.2.1. $\left[C p_{2} M(C O)\left(P R_{2} S\right)\right]\left(2 a, 2 b ; 2 a^{\prime}, 2^{\prime} b\right)$

A 61 mg ( 0.24 mmol ) sample of elemental sulfur was added to a solution of 200 mg ( 0.64 mmol ) of $\mathbf{1 a}$ $\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PMe}_{2}\right)\right]$ in 20 ml of toluene. After 5 min , the solvent of the pink mixture was removed under vacuum. The crude reaction product was chromatographed on silica gel with THF as eluant. Complex 2a $\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{~S}\right)\right]$ was obtained with a $74 \%$ yield
$\left[\mathrm{Cp}_{2} \mathbf{N b}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{~S}\right)\right]$ (2a): IR (CsI): $\boldsymbol{\nu ( \mathrm { P } = \mathrm { S } ) 5 4 6}$ $\mathrm{cm}^{-1}$. IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1938 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO})$ $1929 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.43$ (d, $J=2.2$
$\mathrm{Hz}, \mathrm{Cp}) ; 1.60(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR ( $\mathrm{CD}_{3} \mathrm{CO}-$ $\mathrm{CD}_{3}$ ): $\delta 42$ (s).

Compounds $\mathbf{2 b}$ and $\mathbf{2}^{\prime} \mathbf{a}, \mathbf{2}^{\prime} \mathbf{b}$ were prepared similarly with a $70-75 \%$ yield.
[ $\left.\mathrm{Cp}_{2} \mathbf{N b}(\mathbf{C O})\left(\mathrm{PPh}_{2} \mathbf{S}\right)\right]$ (2b): Anal. Found: C, 59.3; H, 4.1. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NbOPS}$ calc.: $\mathrm{C}, 59.0 ; \mathrm{H}, 4.3 \%$. Field desorption mass spectroscopy (FDMS) (toluene): 440.2 ( $\mathrm{M}^{+}-\mathrm{CO}$ ). IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 570 \mathrm{~cm}^{-1}$. IR $\left(\mathrm{CHCl}_{3}\right)$ : $\nu$ (CO) $1928 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 1917 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 8.20-7.15(\mathrm{~m}, \mathrm{Ph}) ; 5.24(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 75(\mathrm{~s})$.
$\left[\mathrm{Cp}_{2} \mathbf{T a}(\mathbf{C O})\left(\mathrm{PMe}_{\mathbf{2}} \mathrm{S}\right)\right]\left(\mathbf{2}^{\prime} \mathrm{a}\right):$ Anal. Found: $\mathrm{C}, 37.0 ; \mathrm{H}$, 3.4. $\mathrm{C}_{13} \mathrm{H}_{16}$ OPSTa calc.: $\mathrm{C}, 36.1, \mathrm{H}, 3.7 \%$. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 554 \mathrm{~cm}^{-1}$. IR $\left(\mathrm{CHCl}_{3}\right): \nu(\mathrm{CO}) 1924 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 1912 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta$ 5.39 (d, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}$ ); 1.67 ( $\mathrm{d}, J=8 \mathrm{~Hz}, \mathrm{Me}$ ). ${ }^{31} \mathrm{P}$ NMR ( $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ). $\delta 15$ (s).
[ $\left.\mathbf{C p}_{\mathbf{2}} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{S}\right)\right]$ (2'b): FDMS (toluene): 528.4 ( $\mathrm{M}^{+}-\mathrm{CO}$ ). IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 574 \mathrm{~cm}^{-1}$. IR $\left(\mathrm{CHCl}_{3}\right)$ : $\nu(\mathrm{CO}) 1912 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 1905 \mathrm{~cm}^{-1} .{ }^{\mathrm{r}} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 8.20-7.20(\mathrm{~m}, \mathrm{Ph}) ; 5.20(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 52(\mathrm{~s})$.

### 3.2.2. $\left[C p_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2} \mathrm{O}\right)\right]\left(3 \mathrm{~b} ; \mathbf{3 ' b}^{\prime} \mathrm{b}\right)$

To a stirred solution of 270 mg of $1 \mathrm{~b}\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{2}\right)\right](0.62 \mathrm{mmol})$ in 15 ml of toluene was added 0.9 ml of $\mathrm{H}_{2} \mathrm{O}_{2}(3 \%)$ followed by 5 ml of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \%)$. A color change from brown to pink was observed accompanied by the formation of a precipitate. The mixture was filtered and the precipitate was washed with toluene and pentane. After the solvent was removed, $\mathbf{3 b}\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{O}\right)\right]$ was obtained with a $80 \%$ yield.
[ $\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathbf{O}\right)$ ] (3b): Anal. Found: C 61.9, H , 4.1. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NbO}_{2} \mathrm{P}$ calc.: C, $61.1 ; \mathrm{H}, 4.4 \%$. FDMS (acetone): 424.1 ( $\mathrm{M}^{+}-\mathrm{CO}$ ). IR (CsI): $\nu(\mathrm{P}=\mathrm{O}) 1033$ $\mathrm{cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 1919 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3^{-}}$ $\mathrm{COCD}_{3}$ ): $\delta 8.00-7.20(\mathrm{~m}, \mathrm{Ph}) ; 5.21$ (d, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}$ ). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 98$ (s).
[ $\left.\mathbf{C p}_{\mathbf{2}} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P P h}_{\mathbf{2}} \mathbf{O}\right)\right]\left(\mathbf{3}^{\prime} \mathbf{b}\right):$ FDMS (acetone): 512.2 ( $\mathrm{M}^{+}-\mathrm{CO}$ ). IR (CsI): $\nu(\mathrm{P}=\mathrm{O}) 1029 \mathrm{~cm}^{-1}$, IR $\left(\mathrm{CHCl}_{3}\right)$ : $\nu(\mathrm{CO}) 1928 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 1905 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ): $\delta 7.90-7.20(\mathrm{~m}, \mathrm{Ph}) ; 5.18(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 77(\mathrm{~s})$.

### 3.2.3. $\left[C p_{2} M(C O)\left(P R_{2} X M e\right)\right] I\left(4 a, 4 b ; 4^{\prime} a, 4 \prime b ; 5 b ;\right.$ 5'b)

A solution of $200 \mathrm{mg}(0.58 \mathrm{mmol})$ of 2 a [ $\left.\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{~S}\right)\right]$ in 20 ml of toluene was treated with one equivalent of MeI. This afforded an orange
precipitate. After filtration, product 4a was washed with toluene and pentane and was dried under vacuum. It was obtained in quantitative yield.
$\left[\mathrm{Cp}_{2} \mathbf{N b}(\mathbf{C O})\left(\mathrm{PMe}_{\mathbf{2}} \mathbf{S M e}\right)\right] \mathbf{I}(\mathbf{4 a}):$ IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 501$ $\mathrm{cm}^{-1}$. IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1964 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.64(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{Cp}) ; 2.24(\mathrm{~d}, J=9 \mathrm{~Hz}$, SMe); $1.9\left(\mathrm{~d}, J=7 \mathrm{~Hz}, \mathrm{PMe}_{2}\right) .{ }^{31} \mathrm{P}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta$ 62 (s).

Compounds $\mathbf{4 b}$ and $\mathbf{4}^{\prime} \mathbf{a}, \mathbf{4}^{\prime} \mathbf{b}$ were prepared similarly and obtained with the same yield.
[ $\mathrm{Cp}_{\mathbf{2}} \mathbf{N b} \mathbf{C O}$ )( $\mathbf{P P h}_{\mathbf{2}} \mathbf{S M e}$ )]I (4b): Anal. Found: C, 47.0; $\mathrm{H}, 3.8 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{INbOPS}$ calc.: $\mathrm{C}, 47.2 ; \mathrm{H}, 3.8 \%$. FDMS ( $\mathrm{CHCl}_{3}$ ): $483.3\left(\mathrm{M}^{+}\right)$. IR (CsI); $\nu(\mathrm{P}=\mathrm{S}) 522 \mathrm{~cm}^{-1}$. IR $\left(\mathrm{CHCl}_{3}\right): \nu(\mathrm{CO}) 1966 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.70-7.40(\mathrm{~m}, \mathrm{Ph}) ; 5.55(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 2.10(\mathrm{~d}, J=8$ $\mathrm{Hz}, \mathrm{SMe}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 81(\mathrm{~s})$.
$\left[\mathbf{C p}_{2} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P M e}_{\mathbf{2}} \mathbf{S M e}\right)\right] \mathbf{I}\left(\mathbf{4}^{\prime} \mathbf{a}\right)$ : Anal. Found: C, 29.9; $\mathrm{H}, 3.2 . \mathrm{C}_{14} \mathrm{H}_{19}$ IOPSTa calc.: $\mathrm{C}, 29.3 ; \mathrm{H}, 3.3 \%$. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 503 \mathrm{~cm}^{-1}$. IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1950 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 5.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, \mathrm{Cp}) ; 2.22$ (d, $J=9.5 \mathrm{~Hz}, \mathrm{SMe}$ ); 1.96 (d, $J=7 \mathrm{~Hz}, \mathrm{PMe}_{2}$ ). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31$ (s).
[ $\left.\mathrm{Cp}_{2} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P P h}_{2} \mathbf{S M e}\right)\right]$ ( $\left.\mathbf{4}^{\prime} \mathbf{b}\right)$ : Anal. Found: C, 42.2; $\mathrm{H}, 3.5 . \mathrm{C}_{24} \mathrm{H}_{23}$ IOPSTa calc.: $\mathrm{C}, 41.3 ; \mathrm{H}, 3.3 \%$. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 529 \mathrm{~cm}^{-1}$. IR $\left(\mathrm{CHCl}_{3}\right): \nu(\mathrm{CO}) 1951 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.60-7.50(\mathrm{~m}, \mathrm{Ph}) ; 5.37(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, \mathrm{Cp}) ; 2.05(\mathrm{~d}, J=9 \mathrm{~Hz}, \mathrm{SMe}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 54 (s).

Compounds $\mathbf{5 b}$ and $\mathbf{5}^{\prime} \mathbf{b}$ may be made by an analogous procedure with THF instead of toluene.
[ $\mathrm{Cp}_{2} \mathbf{N b}$ (CO) $\mathbf{P P h}_{\mathbf{2}} \mathbf{O M e}$ )]II (5b): IR (THF): $\nu(\mathrm{CO})$ $1939 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.65-7.55(\mathrm{~m}, \mathrm{Ph})$; $5.49(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 3.59(\mathrm{~d}, J=11 \mathrm{~Hz}, \mathrm{OMe}) .{ }^{31} \mathrm{P}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 167$ (s).
 $1924 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.65-7.55(\mathrm{~m}, \mathrm{Ph})$; 5.45 (d, $J=2 \mathrm{~Hz}, \mathrm{Cp}$ ); 3.63 (d, $J=12 \mathrm{~Hz}, \mathrm{OMe}$ ). ${ }^{31} \mathrm{P}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 142$ (s).

### 3.2.4. $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mathrm{PR}_{2} \mathrm{XCOMe}\right) / \mathrm{Cl}\left(6 a, 6 \mathrm{~b} ; \mathbf{6}^{\prime} \mathrm{a}, \mathbf{6}^{\prime} \mathrm{b}\right.\right.$; 7b; $7^{\prime} b$ )

To a solution of $200 \mathrm{mg}(0.58 \mathrm{mmol})$ of $2 \mathrm{a}\left[\mathrm{Cp}_{2^{-}}\right.$ $\left.\mathrm{Nb}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{~S}\right)\right]$ in 20 ml of toluene was added one equivalent of MeCOCl . The yellow precipitate was filtered, washed with toluene and pentane and dried under vacuum. Product 6a was obtained with a quantitative yield.
[ $\left.\mathrm{Cp}_{2} \mathbf{N b}(\mathbf{C O})\left(\mathrm{PMe}_{2} \mathbf{S C O M e}\right)\right] \mathbf{C l}$ (6a): Anal. Found: C , 42.1; $\mathrm{H}, 4.8 . \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClNbO}_{2}$ PS calc.: C, 42.6 ; $\mathrm{H}, 4.5 \%$. IR $\left(\mathrm{CHCl}_{3}\right): \nu(\mathrm{CO}) 1959-1930 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.65(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{Cp}) ; 2.37(\mathrm{~d}, J=1 \mathrm{~Hz}$, $\mathrm{COMe}) ; 2.08\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, \mathrm{PMe}_{2}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ : $\delta 79$ (s).

Compounds $\mathbf{6 b}, \mathbf{6}^{\prime} \mathbf{a}, \mathbf{6}^{\prime} \mathbf{b}, \mathbf{7 b}$ and $\mathbf{7}^{\prime} \mathbf{b}$ were prepared by an analogous procedure and obtained in the same yield.
[ $\left.\mathbf{C p}_{\mathbf{2}} \mathbf{N b}(\mathbf{C O})\left(\mathbf{P P h}_{2} \mathbf{S C O M e}\right)\right] \mathbf{C l}$ (6b): IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1964,1931 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 87.60-7.50$ ( $\mathrm{m}, \mathrm{Ph}$ ); $5.56(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 2.43(\mathrm{~d}, J=1 \mathrm{~Hz}$, COMe). ${ }^{31} \mathrm{P}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 91$ ( s ).
[ $\mathrm{Cp}_{2} \mathbf{T a}$ (CO)(PMe $\mathbf{P C O M e}^{\mathbf{S C O}}$ )]Cl (6'a): IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1948,1729 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 5.64$ (d, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}$ ); 2.38 (d, $J=1 \mathrm{~Hz}, \mathrm{COMe}$ ); 2.19 (d, $\left.J=8 \mathrm{~Hz}, \mathrm{PMe}_{2}\right) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 49(\mathrm{~s})$.
$\left[\mathbf{C p}_{2} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P P h}_{2} \mathbf{S C O M e}\right)\right] \mathbf{C l}$ (6'b): IR ( $\mathrm{CHCl}_{3}$ ): $\nu(\mathrm{CO}) 1951,1735 \mathrm{~cm} \quad{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 7.60-7.50$ (m, Ph); 5.53 (d, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}$ ); 2.44 (d, $J=1 \mathrm{~Hz}$, COMe). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 64$ (s).
[ $\mathrm{Cp}_{2} \mathbf{N b}$ (CO) $\left.\left(\mathrm{PPh}_{\mathbf{2}} \mathbf{O C O M e}\right)\right] \mathbf{C l}$ (7b): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.80-7.50(\mathrm{~m}, \mathrm{Ph}) ; 5.71(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $\mathrm{Cp}) ; 2.52$ (d, $\quad J=1 \mathrm{~Hz}, \mathrm{COMe}$ ). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 177$ (s).
[ $\left.\mathbf{C p}_{2} \mathbf{T a}(\mathbf{C O})\left(\mathbf{P P h}_{2} \mathbf{O C O M e}\right)\right] \mathrm{Cl}\left(\mathbf{7}^{\prime} \mathbf{b}\right):$ IR ( $\left.\mathrm{CHCl}_{3}\right)$ : $\nu(\mathrm{CO}) 1940,1701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta$ $7.80-7.50(\mathrm{~m}, \mathrm{Ph}) ; 5.66(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{Cp}) ; 2.55$ (d, $J=1 \mathrm{~Hz}, \mathrm{COMe}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 150(\mathrm{~s})$.

### 3.2.5. $\left./ \mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PR}_{2} S\right) M^{\prime}(\mathrm{CO})_{5}\right]\left(\mathbf{8}^{\prime} \boldsymbol{a} ; \mathbf{9}^{\prime} \mathbf{a}\right.$;

 10a, 10b; 10'a, 10'b)To a solution of $250 \mathrm{mg}(0.58 \mathrm{mmol})$ of $\left[\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\right.$ ( $\mathrm{PMe}_{2} \mathrm{~S}$ )] ( $\mathbf{2}^{\prime} \mathbf{a}$ ) in 15 ml of THF was added an excess of $\left[\mathrm{Cr}(\mathrm{CO})_{5}(\mathrm{THF})\right]$. The mixture was stirred for 15 min at room temperature (the reaction was monitored by IR spectroscopy). The solvent was removed under vacuum and the crude reaction product was chromatographed on silica gel with THF : toluene ( $10: 100$ ) as eluant. The bimetallic complex $8^{\prime}$ a $\left[\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \boldsymbol{\eta}^{1}\right.\right.$ $\left.\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{Cr}(\mathrm{CO})_{5}$ ] was obtained with a $55 \%$ yield.
$\left[\mathrm{Cp}_{\mathbf{2}} \mathrm{Ta}(\mathrm{CO})\left(\boldsymbol{\mu}, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{PMe}_{2} \mathbf{S}\right) \mathrm{Cr}(\mathbf{C O})_{5}\right] \quad 8^{\prime}$ a: Anal. Found: C, $34.9 ; \mathrm{H}, 2.8 ; \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{CrO}_{6} \mathrm{PSTa}$ calc.: C , 34.6; H, 2.6\%. FDMS (acetone): 624.0 ( $\mathrm{M}^{+}$). IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 507 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 2046,1929,1912$, $1881 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.51(\mathrm{~d}, J=2$ $\mathrm{Hz}, \mathrm{Cp}) ; 1.85(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Me}) \cdot{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CO}-\right.$ $\mathrm{CD}_{3}$ ): $\delta 30$ (s).

Compounds $9^{\prime} \mathbf{a}, 10 \mathrm{a}, 10 \mathrm{~b}$ and $\mathbf{1 0}^{\prime} \mathbf{a}, \mathbf{1 0}^{\prime} \mathbf{b}$ were prepared similarly with a $50-60 \%$ yield.
[ $\left.\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{Mo}(\mathrm{CO})_{5}\right]\left(\mathbf{9}^{\prime} \mathrm{a}\right):$ FDMS (acetone): 670.0 (M ${ }^{+}$). IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 515 \mathrm{~cm}^{-1}$. IR (THF): $\nu$ (CO) 2061, 1931, 1922, $1880 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.51(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 1.82(\mathrm{~d}, J=8$ $\mathrm{Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 26(\mathrm{~s})$.
$\left[\mathrm{Cp}_{2} \mathbf{N b}(\mathrm{CO})\left(\boldsymbol{\mu}, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{PMe}_{2} \mathrm{~S}\right) \mathbf{W}(\mathrm{CO})_{5}\right]$ (10a): IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 511 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 2050,1923$, 1910, $1876 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.57(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, \mathrm{Cp}$ ); 1.73 (d, $J=7.5 \mathrm{~Hz}, \mathrm{Me}$ ). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 58(\mathrm{~s})$.
$\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{1}-\mathrm{PPh}_{\mathbf{2}} \mathrm{S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ (10b): IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 535 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 2060,1923$, $1875 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.80-7.45(\mathrm{~m}$, $\mathrm{Ph}) ; 5.38(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, \mathrm{Cp}){ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ : $\delta 84$ (s).
$\left[\mathrm{Cp}_{\mathbf{2}} \mathrm{Ta}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}} \mathrm{PMMe}_{\mathbf{2}} \mathrm{S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]$ (10'a): Anal. Found: C, 28.7; $\mathrm{H}, 2.3 ; \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6}$ PSTaW calc.: $\mathrm{C}, 28.6$;

H, 2.1\%. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 515 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO})$ 2058, 1924, 1911, $1870 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ): $\delta 5.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, \mathrm{Cp}) ; 1.82(\mathrm{~d}, J=8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR ( $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ): $\delta 28$ (s).
$\left[\mathrm{Cp}_{2} \mathbf{T a}(\mathbf{C O})\left(\mu, \boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{PPh}_{\mathbf{2}} \mathbf{S}\right) \mathbf{W}(\mathbf{C O})_{\mathbf{s}}\right]\left(\mathbf{1 0}^{\prime} \mathrm{b}\right):$ FDMS (acetone): $880.5\left(\mathrm{M}^{+}\right)$. IR (CsI): $v(\mathrm{P}=\mathrm{S}) 539 \mathrm{~cm}^{-1}$. IR (THF): $\nu$ (CO) 2060, 1940, 1922, $1875 \mathrm{~cm}^{-1}$. $^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.80-7.45(\mathrm{~m}, \mathrm{Ph}) ; 5.34(\mathrm{~d}, J=2 \mathrm{~Hz}$, $\mathrm{Cp}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 58(\mathrm{~s})$.

### 3.2.6. $\left./ \mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{1}: \eta^{1}-\mathrm{PMe}{ }_{2} S\right) \mathrm{MnCp}(\mathrm{CO})_{2}\right]$ (11'a)

This compound was prepared by an analogous procedure to $8^{\prime}$ a with a $45 \%$ yield.
$\left[\mathbf{C p}_{2} \mathbf{T a}(\mathbf{C O})\left(\boldsymbol{\mu}, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}} \mathrm{PPMe}_{\mathbf{2}} \mathbf{S}\right) \mathrm{MnCp}\left(\mathrm{CO}_{\mathbf{2}}\right]\right.$ (11'a): Anal. Found: C, 40.1; H, 3.1. $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{MnO}_{3} \mathrm{PSTa}$ calc.: $\mathrm{C}, 39.5 ; \mathrm{H}, 3.5 \%$. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 511 \mathrm{~cm}^{-1}$. IR (THF): $\nu$ (CO) 1922, 1905, $1833 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3}-$ $\mathrm{COCD}_{3}$ ); $\delta 5.42\left(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}_{2} \mathrm{Ta}\right) ; 4.30(\mathrm{~s}, \mathrm{CpMn})$, 1.72 (d, $J=8 \mathrm{~Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 30$ (s).

Table 2
Crystallographic and Experimental Data for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{SMe}\right)\right] \mathrm{I}(4 \mathrm{~b})$ and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PMe} \mathrm{C}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO}) \mathbf{N}_{5}\left(10^{\prime} \mathrm{a}\right)$

|  | 4b | 10'a |
| :---: | :---: | :---: |
| Chemical formula | $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{INbOPS}$ | $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{PSTaW}$ |
| Formula weight | 630.46 | 669.19 |
| Color | Orange | Red |
| Crystal system | Triclinic | Monoclinic |
| Space group | P1 | $\mathrm{P}_{1} / 1 n$ |
| $a(\AA)$ | 9.875(2) | 7.849(5) |
| $b$ ( $\AA$ ) | 10.756(2) | 21.78(2) |
| $c$ (Å) | 11.566(3) | 12.94(1) |
| $\alpha\left({ }^{\circ}\right)$ | 87.56(2) |  |
| $\left.\beta{ }^{( }\right)$ | 76.75(2) | 99.36(6) |
| $\gamma\left({ }^{\circ}\right)$ | 82.35(2) |  |
| $v\left(\AA^{3}\right)$ | 1185.0 | 2182.7 |
| $Z$ | 2 | 4 |
| $\rho_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.767 | 2.30 |
| F(000) | 640 | 1400 |
| $\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$ ) $\left(\mathrm{cm}^{-1}\right)$ | 19.412 | 105.3 |
| Radiation | Mo $\mathrm{K} \boldsymbol{\alpha} ; \lambda=0.71073 \AA$ | Mo $\mathrm{K} \alpha ; \lambda=0.71068$ £ |
| Temperature (K) | 295 | 295 |
| Scan type | $\omega-2 \theta$ | $\omega-\theta$ |
| $h k l$ |  |  |
| lower limit | -11,-12, 0 | $-11,0,0$ |
| upper limit | 11, 12, 13 | 11, 30, 18 |
| $\theta$ range ( ${ }^{\circ}$ ) | 2-25 | 1.5-30 |
| linear decay (\%) | -1.3 (corrected) |  |
| Total number of reflections | 4519 | 6615 |
| Number of unique reflections | 3435 ( $I>3 \sigma(I)$ ) | 3813 ( $I>3 \sigma(I)$ ) |
| Number of variables | 262 | 254 |
| Absorption correction, $\Psi$ scan | 0.964-0.999 | 0.23-1.0 |
| $R$ | 0.026 | 0.067 |
| $R_{\text {w }}$ | 0.025 | 0.057 |
| Goodness of fit | 3.894 | 3.08 |
| Weighting scheme | $w=1 / \sigma^{2}(F)$ |  |
| Residual density (electrons $\AA^{-3}$ ) | +0.25 to -0.40 | +3.45 to -3.61 |

### 3.2.7. $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mu, \eta^{I}: \eta^{I}-\mathrm{PMe} e_{2} \mathrm{~S}\right) \mathrm{Fe}(\mathrm{CO})_{4}\right]$ 12'a)

Equimolar amounts of $\left[\mathrm{Cp}_{2} \mathrm{Ta}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{~S}\right)\right]$ (2'a) and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ in 20 ml of THF were stirred at room temperature. The progress of the reaction was monitored by recording IR spectra. After 1 h , the solvent of the dark-brown mixture was removed under vacuum and the residue was chromatographed on silica gel with toluene as eluant. The orange complex 12'a was obtained with a $40 \%$ yield.
$\left[\mathrm{Cp}_{2} \mathbf{T a}(\mathrm{CO})\left(\boldsymbol{\mu}, \boldsymbol{\eta}^{\mathbf{1}}: \boldsymbol{\eta}^{\mathbf{1}}-\mathrm{PMe}_{\mathbf{2}} \mathrm{S}\right) \mathrm{Fe}(\mathrm{CO})_{\mathbf{4}}\right]$ (12'a): FDMS (acetone): $600.5\left(\mathrm{M}^{+}\right)$. IR (CsI): $\nu(\mathrm{P}=\mathrm{S}) 504 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 2022,1946,1926,1909 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.53(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 1.82(\mathrm{~d}, J=8$ $\mathrm{Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 30(\mathrm{~s})$.

Compound 12a was prepared similarly with the same yield.

Table 3
Atomic coordinates and equivalent isotropic displacement parameters for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Nb}(\mathrm{CO})\left(\mathrm{PPh}_{2} \mathrm{SMe}\right)\right] \mathrm{I}(4 \mathrm{~b})$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ | $\begin{aligned} & U_{\mathrm{eq}}{ }^{1} \\ & \left(\AA^{2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| I | 0.67905(3) | 0.20906(3) | 0.91699(2) | 67(1) |
| Nb | 0.14391(3) | $0.27585(3)$ | 0.23799(3) | 31(1) |
| S | -0.13283(9) | $0.21275(8)$ | 0.51884(7) | 41(1) |
| P | -0.10414(8) | 0.22231(7) | 0.33396(7) | 28(1) |
| C(1) | 0.0759(4) | $0.4506(4)$ | 0.3109(4) | 56(2) |
| O(1) | 0.0416(4) | $0.5499(3)$ | 0.3484(3) | 95(3) |
| CNT(1) | 0.2800 | 0.1923 | 0.3370 |  |
| CNT(2) | 0.1420 | 0.3063 | 0.0620 |  |
| C(2) | -0.3160(4) | 0.1938(4) | 0.5704(3) | 50(2) |
| C(3) | 0.2063(4) | 0.2445(4) | 0.4236(3) | 50(2) |
| C(4) | 0.1982(4) | 0.1229(3) | 0.3851(3) | 45(2) |
| C(5) | $0.3010(4)$ | 0.0980 (3) | 0.2799(3) | 49(2) |
| C(6) | 0.3758(4) | 0.2036(4) | 0.2541(3) | 49(2) |
| C(7) | $0.3190(4)$ | 0.2928(4) | 0.3422(3) | 55(2) |
| C(8) | 0.2664(5) | 0.2954(5) | 0.0378(3) | 68(3) |
| C(9) | 0.1843(5) | 0.1978(5) | 0.0402(3) | 64(3) |
| C(10) | 0.0425(4) | 0.2507(4) | 0.0715(3) | 56(2) |
| C(11) | 0.0387(4) | 0.3799(4) | 0.0915(3) | 56(2) |
| C(12) | 0.1783(5) | $0.4075(5)$ | 0.0688(4) | 68(3) |
| C(13) | -0.2408(3) | 0.3464(3) | 0.3089(3) | 29(2) |
| C(14) | -0.2764(4) | 0.4503(3) | 0.3830(3) | $39(2)$ |
| C(15) | -0.3690(4) | 0.5509(3) | 0.3585(3) | 47(2) |
| C(16) | -0.4265(4) | 0.5490(3) | 0.2610(4) | 48(2) |
| C(17) | -0.3921(3) | 0.4463(3) | 0.1872(3) | 43(2) |
| C(18) | -0.2996(3) | 0.3442(3) | 0.2115(3) | 36(2) |
| C(19) | -0.1576(3) | 0.0761(3) | 0.2962(3) | 23(2) |
| C(20) | -0.0530(4) | -0.0224(3) | 0.2566(3) | 41(2) |
| C(21) | -0.0881(4) | -0.1396(3) | $0.2343(3)$ | 49(2) |
| C(22) | -0.2260(5) | -0.1566(4) | 0.2504(3) | 55(2) |
| C(23) | -0.3305(4) | -0.0595(4) | 0.2874(4) | 57(3) |
| C(24) | -0.2969(4) | 0.0568(3) | 0.3116(3) | 44(2) |

$\mathrm{CNT}(1)$ and $\mathrm{CNT}(2)$ are the gravity centers of the $\mathrm{C}(3)-\mathrm{C}(7)$ and $\mathrm{C}(8)-\mathrm{C}(12)$ rings.

[^1]Table 4
Atomic coordinates and equivalent isotropic displacement parameters for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ta}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{1}-\mathrm{PMe}_{2} \mathrm{~S}\right) \mathrm{W}(\mathrm{CO})_{5}\right]\left(\mathbf{1 0}^{\prime} \mathrm{a}\right)$

| Atom | $\boldsymbol{x}$ | $y$ | $z$ | $\begin{aligned} & U_{\mathrm{eq}}{ }^{1} \\ & \left(\mathrm{\AA}^{2}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| W | 0.0962(1) | 0.2348(1) | 0.4563(1) | 41(1) |
| C(1) | -0.1546(34) | 0.1989 (11) | 0.4326 (24) | $70(11)$ |
| O(1) | -0.2824(23) | 0.1802(9) | $0.4185(19)$ | 104(10) |
| C(2) | $0.1172(30)$ | $0.2150(11)$ | 0.6061(23) | 65(10) |
| O(2) | $0.1224(23)$ | $0.2106(10)$ | $0.6989(16)$ | 91(9) |
| C(3) | $0.0646(31)$ | 0.2638(9) | 0.3108(19) | 53(9) |
| C(3) | 0.0272(21) | 0.2820 (7) | $0.2253(13)$ | 65(7) |
| C(4) | $0.3669(44)$ | $0.2623(13)$ | 0.4698(24) | 122(15) |
| $\mathrm{O}(4)$ | $0.4830(22)$ | 0.2815 (10) | 0.4879(17) | 100(10) |
| C(5) | $0.0276(34)$ | $0.3167(11)$ | $0.4887(20)$ | 70(11) |
| O(5) | -0.0127(27) | 0.3677(8) | 0.5043(15) | 91(9) |
| S | $0.1951(8)$ | 0.1225(3) | 0.4324(4) | 49(2) |
| P | 0.1956 (6) | 0.0971(2) | $0.2800(4)$ | 32(2) |
| C(7) | $0.3148(23)$ | 0.1549(9) | 0.2160(16) | 47(8) |
| C(8) | -0.0212(24) | 0.1114(9) | 0.2041(16) | 53(8) |
| Ta | 0.3001(1) | -0.0135(1) | 0.2597(1) | 29(1) |
| C(6) | $0.2457(27)$ | -0.0028(13) | 0.1068(19) | 67(10) |
| O(6) | 0.2052(18) | -0.0017(9) | 0.0137(12) | 72(7) |
| CNT(1) | 0.5668 | -0.0104 | 0.2827 |  |
| CNT(2) | 0.1061 | -0.0678 | 0.3025 |  |
| C(11) | 0.5742(23) | -0.0220(9) | 0.3759(16) | 44(7) |
| C(12) | $0.5748(23)$ | -0.0659(9) | 0.2920(19) | 46(8) |
| C(13) | $0.5664(25)$ | -0.0336(10) | 0.1957(21) | 53(9) |
| C(14) | $0.5570(22)$ | $0.0314(10)$ | 0.2199(17) | 42(7) |
| C(15) | $0.5615(21)$ | 0.0383(9) | 0.3299(17) | 42(7) |
| C(16) | $0.2103(34)$ | -0.1043(13) | $0.3314(21)$ | 60(10) |
| C(17) | $0.1602(27)$ | -0.0594(11) | 0.3925(18) | $49(8)$ |
| C(18) | 0.0314(35) | -0.0252(11) | 0.3257(24) | 77(12) |
| C(19) | $0.0039(31)$ | -0.0492(13) | 0.2289(21) | 68(11) |
| C(20) | $0.1247(37)$ | -0.1008(12) | 0.2339(29) | 92(15) |

$\mathrm{CNT}(1)$ and $\mathrm{CNT}(2)$ are the gravity centers of the $\mathrm{C}(11)-\mathrm{C}(15)$ and $\mathrm{C}(16)-\mathrm{C}(20)$ rings.
${ }^{1}$ Equivalent isotropic $U$ defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
$\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{1}-\mathrm{PMe}_{\mathbf{2}} \mathbf{S}\right) \mathrm{Fe}(\mathrm{CO})_{4}\right]$ (12a): Anal. Found: C, 39.9; H, 3.2. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{FeNbO}_{5} \mathrm{PS}$ calc.: C , 39.8; H, 3.1\%. IR (CSI): $\nu(\mathrm{P}=\mathrm{S}) 500 \mathrm{~cm}^{-1}$. IR (THF): $\nu(\mathrm{CO}) 2023,1934,1920,1908 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 5.58(\mathrm{~d}, J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 1.73(\mathrm{~d}, J=8$ $\mathrm{Hz}, \mathrm{Me}) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 30(\mathrm{~s})$.

### 3.2.8. $\left[\mathrm{Cp}_{2} \mathrm{M}(\mathrm{CO})\left(\mu, \eta^{1}: \eta^{I}-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{SnBu}_{3} \mathrm{Cl}\right]$ 13'b)

A $250 \mathrm{mg}(0.57 \mathrm{mmol})$ sample of $\mathbf{1 b}\left[\mathrm{Cp}_{2} \mathrm{Nb}(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{2}\right)\right]$ was dissolved in 20 ml of THF. The solution was treated with one equivalent of $\mathrm{Bu}_{3} \mathrm{SnCl}$. After 5 min , the solvent removed and the pink solid was washed with pentane.
$\left[\mathrm{Cp}_{2} \mathbf{N b}(\mathbf{C O})\left(\mu, \boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{1}-\mathrm{PPh}_{2} \mathbf{O}\right) \mathrm{SnBu}_{3} \mathbf{C l}\right]$ (13b): IR (CsI): $v(\mathrm{P}=\mathrm{O}) 1013 \mathrm{~cm}^{-1}$. IR (THF): $\nu$ (CO) $1932 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.60-7.40(\mathrm{~m}, \mathrm{Ph}) ; 5.30(\mathrm{~d}$, $J=2 \mathrm{~Hz}, \mathrm{Cp}$ ); $1.71\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 1.32\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 1.13(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right) ; 0.83\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR ( $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ ): $\delta 121$ (s).
[ $\left.\mathrm{Cp}_{\mathbf{2}} \mathbf{T a}(\mathrm{CO})\left(\mu, \boldsymbol{\eta}^{1}: \boldsymbol{\eta}^{1}-\mathrm{PPh}_{2} \mathrm{O}\right) \mathrm{SnBu}_{3} \mathrm{Cl}\right] \quad\left(\mathbf{1 3}^{\prime} \mathrm{b}\right):$ IR (CsI): $\nu$ (P=O) $1020 \mathrm{~cm}^{-1}$. IR (THF): $\nu$ (CO) $1917 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.70-7.40(\mathrm{~m}, \mathrm{Ph}) ; 5.25(\mathrm{~d}$, $J=2 \mathrm{~Hz}, \mathrm{Cp}) ; 1.70\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 1.28\left(\mathrm{~m}, \mathrm{CH}_{2}\right) ; 1.19(\mathrm{~m}$, $\left.\mathrm{CH}_{2}\right) ; 0.83\left(\mathrm{t}, J=7 \mathrm{~Hz}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right):$ $\delta 95$ (s).

### 3.3. Crystal structure analyses

Crystals of 4b (orange; $0.25 \times 0.20 \times 0.20 \mathrm{~mm}$ ) and of 10'a (red; $0.19 \times 0.38 \times 0.76 \mathrm{~mm}$ ) were mounted on Enraf-Nonius CAD4 and AED II (Siemens-Stoe) diffractometers, respectively. The crystal data and data collcetion parameters are summarized in Table 2. Intensities were corrected for Lorentz and polarization effects, and an empirical absorption correction ( $\Psi$ scan) was made for both structures. The Enraf-Nonius SDP library [24] was used for data reductions, and the solution and refinement of the structure of $\mathbf{4 b}$ were performed with shelx 76 programs [25a]. All calculations concerning the structure of $\mathbf{1 0}^{\prime}$ a were carried out with shelxtl plus programs [25b]. Neutral-atom scattering factors and anomalous dispersion corrections were those given by Cromer and Waber [26]. Both structures were solved and refined by conventional three-dimensional Patterson, difference Fourier and full-matrix least-squares methods. All non-hydrogen atoms were refined with anisotropic temperature factors. All hydrogen atoms were placed in calculated positions riding on the carbon atoms bearing them and included in the final calculations with $B_{\text {iso }}$ fixed at the values equal to $1.3 H_{\text {eq }}$ for the corresponding carbon atoms in 4b and for 10 'a; all H atoms were fixed at $U_{e q}=0.08$. Final positional parameters of non-hydrogen atoms for $\mathbf{4 b}$ and $\mathbf{1 0}^{\prime}$ a are given in Tables 3 and 4 respectively.

## 4. Supplementary material available

Tables of the anisotropic thermal parameters, hydrogen atom coordinates, full tables of bond distances and angles, and least-squares planes for 4 b and $10^{\prime}$ a have been deposited at the Cambridge Crystallographic Data Centre. Listings of observed and calculated structure factors for $\mathbf{4 b}$ and 10 a are available from the authors.

## Acknowledgments

Acknowledgment is made to the spectroscopy laboratory of the University of Regensburg for recording the field desorption mass spectra and we are also grateful to Dr. J. Wachter for helpful discussions.

Professor G. Huttner is acknowledged for financial support of X-ray crystallography.

## References

[1] M.I. Bruce, J. Organomet. Chem., 242 (1983) 147; D.W. Stephan, Coord. Chem. Rev., 95 (1989) 41.
[2] R.G. Finke, G. Gaughan, C.S. Pierpont and M.E. Cass, J. Am. Chem. Soc., 103 (1981) 1394; M.J. Breen and G.L. Geoffroy, Organometallics, 1 (1982) 1437; V.D. Patel, A.A. Cherkas, D. Nucciarone, N.J. Taylor and A.J. Carty, Organometalics, 4 (1985) 1792; R.T. Baker, W.C. Fultz, T.B. Marder and I.D. Willams, Organometallics, 9 (1990) 2357.
[3] C. Barre, M.M. Kubicki, J.C. Leblanc and C. Moïse, Inorg. Chem., 29 (1990) 5244.
[4] E.N. Jacobsen, M.K. Trost and R.C. Bergman, J. Am. Chem. Soc., 108 (1986) 8092.
[5] J.J. Bonnet, J. Galy, D. De Montauzon and R. Poilblanc, J. Chem. Soc., Chem. Commun., (1977) 47; J.A. De Beer, R.J. Haines, R. Greatex and N.N. Greenwood, J. Chem. Soc. A, (1971) 3271 ; M. Schindehutte, P.H. Van Rooyen and S. Lotz, Organometallics, $g$ (1991) 293; A. Shever, P.Y. Plouffe, D.C. Liles and E. Singleton, Inorg. Chem., 31 (1992) 997; H.T. Schacht, R.C. Haltiwanger and M. Rakowski Dubois, Inorg. Chem., 31 (1992) 1728.
[6] S. Challet, J.C. Leblanc and C. Moïse, New. J. Chem., 17 (1993) 251.
[7] G. Bonnet, O. Lavastre, J.C. Leblanc and C. Moïse, New. J. Chem., 12 (1988) 551.
[8] W. Ehrl and H. Vahrenkamp, Chem. Ber., 103 (1970) 3563; E.W. Ainscough, A.M. Brodie and A.R. Furness, J. Chem. Soc., Dalton Trans., (1973) 2360.
[9] G. Bonnet, M.M. Kubicki, C. Moïse, R. Lazzaroni, P. Salvadori and G. Vitulli, Organometallics, 11 (1992) 964.
[10] G. Bonnet, O. Lavastre, M.M. Kubicki and C. Moise, Proc. 15th International Union of Crystallography, Bordeaux, 1990, 1990, p. C227.
[11] (a) V.G. Adrianov, B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 1129; (b) M.R. Churchill, Perspect. Struct. Chem., 3 (1971) 91.
[12] N.I. Kirillova, A.I. Gusev, A.A. Pasynskii and Yu.T. Struchkov, Zh. Strukt. Khim., 15 (1974) 288.
[13] D.S. Bohle, T.C. Jones, E.F. Clifton, E.F. Richard and W.R. Roper, Organometallics, 5 (1986) 1612.
[14] R.T. Baker, J.C. Calabrese, R.L. Harlow and I.D. Williams, Organometallics, 12 (1993) 830.
[15] W.E. Buhro, B.D. Zwick, S. Georgiou, J.P. Hutchinson and J.A. Gladysz, J. Am. Chem., 110 (1988) 2427.
[16] S. Challet, O. Lavastre, C. Moïse, J.C. Leblanc and B. Nuber, New J. Chem. in press.
[17] C.D. Garner, N.C. Howlader and F.E. Mabbs, J. Chem. Soc., Dalton trans., (1978) 1350.
[18] E.N. Baker and B.R. Reay, J. Chem. Soc. Dalton Trans., (1973) 2205.
[19] W. Dreissig and K. Plieth, Acta Crystallogr., Sect. B, 28 (1972) 3478.
[20] W. Dreissig, K. Plieth and P. Zäske, Acta Crystallogr., Sect. B, 28 (1972) 3473.
[21] M.M. Kubicki and W. Wojciechowski, J. Mol. Struct., 33 (1976) 201.
[22] U. Kolb, M. Dräger, E. Fischer and K. Jurkschat, J. Organomet. Chem., 423 (1992) 339.
[23] W. Strohmeier and F.J. Mueller, Chem. Ber., 102 (1969) 3608; H. Werner, K. Leernhart and Ch. Burschka, J. Organomet. Chem., 160 (1978) 291.
[24] B.A. Frenz, The Enraf-Nonius CAD4-SDP. A real time for concurrent X-ray data collection and crystal structure determination, in M. Schenk, R. Olthof-Hazekamp and M. Van Koningsveld (eds.) Computing in Crystallography, Delft University Press, Delft, 1978.
[25] (a) G.M. Sheldrick, sHELX76, University of Cambridge, Cambridge, Cambs., 1976; (b) G.M. Sheldrick, shelxtl plus Release 3.4, Siemens Analytical Ray Instrument, 1989.
[26] D.T. Cromer and J.T. Waber, International Tables for X-ray Cyystallography, Vol. IV, Kynoch, Birmingham, 1975.


[^0]:    * Corresponding author.

[^1]:    ${ }^{1}$ Equivalent isotropic $U$ defined as one third of the trace of the orthogonalized $U_{\mathrm{ij}}$ tensor.

